Dietetic Outcomes in Home Parenteral Nutrition

Dr Alison Culkin
Research Dietitian
Intestinal Failure & Home Parenteral Nutrition
St Mark’s Hospital
PENG Meeting
November 2011
The Dietetic Outcomes Model

Biochemical Domain

Psychological Domain

Symptom Change Domain

Patient Focused Measures Domain

Behaviour Change Domain

Physical Domain

OUTCOME IS:

ACHIEVED

PARTIALLY ACHIEVED

NOT ACHIEVED
St Mark’s HPN Clinic

History
- Medical illness & QoL
- Incl drug history
- Fluid & nutrition: oral & parenteral

Examination
- CVC
 - Exit site, integrity, (tip position)
- Anthropometrics
 - Weight, BMI, MAC, TSF, MAMC, grip strength

Investigations
- Haem & biochem
 - FBC, ESR, U&E, LFT, Ca, Mg, PO4, CRP
- Micronutrients
 - Ferritin, Zn, Se, Cu, Mn
- Vitamins
 - A, E, D, B12, folate
- Urine sodium
- Urine sodium

Symptom
- Thirst, SOB, oedema, urine frequency, diet

Psychological
- Behaviour change

Behaviour change
Chronic Intestinal Failure (CIF)

- Intestinal failure results from obstruction, dysmotility, surgical resection, congenital defect, or disease-associated loss of absorption and is characterised by the inability to maintain protein-energy, fluid, electrolyte, or micronutrient balance”\(^1\)

- Appropriate dietary advice can help:
 - maximise intestinal absorption
 - ↓ severe diarrhoea or unmanageable stoma/fistula output
 - ↓ dehydration and oxalate kidney stone formation
 - maintain or improve nutritional status
 - ↓ dependency on home parenteral nutrition (HPN)/fluids\(^2\)

- Previous work has shown patients have a poor knowledge\(^3\)
Aim

- To evaluate the effectiveness of an information booklet on patient’s knowledge of the intestinal failure regime
Methods

Patients with CIF were recruited to the study.

A series of baseline assessments were undertaken:

- knowledge
- nutritional intake (oral & HPN)
- intestinal output
- nutritional status
- quality of life
Patients

Inclusion criteria
• aged ≥18 years
• clinically stable
• living at home
• able to take diet orally

Exclusion criteria
• unable to complete food, fluid & output diary
• intestinal obstruction
• planned surgery
• other diet modifications
• previously received booklet
Assessment of Knowledge

- A questionnaire was devised to assess knowledge of the intestinal failure regimen
Assessment of Nutritional Intake

- Patients kept a 3-day diet diary recording food & fluid in household measures
- Energy, protein, fat, carbohydrate & fibre intake was determined and values expressed as mean intake per day
- Volume & nutritional content of HPN recorded
Assessment of Intestinal Output

a) Patients with intestinal continuity

<table>
<thead>
<tr>
<th>Description</th>
<th>< 100 g</th>
<th>100 – 200 g</th>
<th>> 200 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard & Formed</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>- has hard or firm texture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- retains a definite shape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- e.g. a banana, cigar or marbles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft & Formed</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>- retains some general shape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- consistency like peanut butter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loose & Unformed</td>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>- lacking any shape of its own</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- may spread easily</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- consistency like porridge or a thick</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>milkshake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid</td>
<td>J</td>
<td>K</td>
<td>L</td>
</tr>
<tr>
<td>- runny</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- like water</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actual scale: 0 cm to 10 cm
Assessment of Intestinal Output

b) Patients with an intestinal stoma

The Bristol Stool Form Scale

- **Type 1**: Separate hard lumps, like nuts (hard to pass)
- **Type 2**: Sausage-shaped but lumpy
- **Type 3**: Like a sausage but with cracks on its surface
- **Type 4**: Like a sausage or snake, smooth and soft
- **Type 5**: Soft blobs with clear-cut edges (passed easily)
- **Type 6**: Fluffy pieces with ragged edges, a mushy stool
- **Type 7**: Watery, no solid pieces ENTIRELY LIQUID
Assessment of Nutritional Status

The following were determined by a single observer using standard techniques⁷:

- Weight
- Height
- Body mass index (BMI)
- Mid arm circumference (MAC)
- Triceps skin fold thickness (TST)
- Mid-arm muscle circumference (MAMC)
Quality of Life in HPN

- Assessment problematic - hard to differentiate between issues caused by underlying disease & HPN.
- Systematic review8 found QoL comparable with or lower than patients on dialysis. Fatigue common (42-58%) and linked with poor sleep due to overnight infusion inducing nocturia. Patients report a desire for ↓ infusions and quality of life reduces with ↑ frequency of infusions.
- Common symptoms included loss of strength, weight loss, nausea & pain with a third experiencing anxiety and a quarter suffering clinically significant depression9
- Qualitative study found that a lack of education & knowledge regarding dietary advice was associated with poor compliance. Difficulty in obtaining information due to the lack of a dietitian as part of the care team10
Assessment of Quality of Life

- SF-36 examines 8 aspects of life:
 - Health perception
 - Physical function
 - Role-physical
 - Role-emotional
 - Social functioning
 - Mental health
 - Body pain
 - Energy/fatigue

- ED-5Q (EuroQoL) measures health using:
 - descriptive statements which generate a single numeric index
 - a visual analogue scale (VAS) from 0 (worst) to 100 (best imaginable)

- Both have been used to assess quality of life in patients on HPN
- Validated HPN questionnaire devised after study completed
Education

- An information booklet was given & explained with guidance tailored to individual patients, depending on clinical & nutritional status, intestinal anatomy & current oral intake.
- Follow-up assessment was undertaken 3-6 months later.
Patient Population (n=48)

<table>
<thead>
<tr>
<th>Mean age (years)</th>
<th>56.1 ± 13.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M:F)</td>
<td>17:31</td>
</tr>
<tr>
<td>Time since CIF diagnosed (months)</td>
<td>82 ± 87 (0 - 367)</td>
</tr>
</tbody>
</table>

Aetiology
- Crohn’s Disease: 25 (52%)
- Mesenteric infarction: 12 (25%)
- Surgical Complication: 5 (10%)
- Radiation enteritis: 3 (6%)
- Other: 3 (6%)

Artificial nutrition - HPN
- Home parenteral fluids: 4 (8%)
- Subcutaneous fluids: 2 (4%)
- Oral nutritional supplements: 4 (8%)
- Diet alone: 5 (10%)

Intestinal anatomy - Jejunostomy
- Ileostomy: 15 (31%)
- Colostomy: 5 (10%)
- Fistula: 1 (2%)
- No stoma: 16 (33%)
Results - Knowledge

- The mean knowledge score for patients increased significantly after receiving the booklet ($p<0.001$)
- Men increased knowledge score more than women ($p=0.068$)
- No significant association observed between knowledge score & age ($p=0.26$) or time since diagnosis ($p=0.22$)
Results – Nutritional Intake

<table>
<thead>
<tr>
<th>Variable</th>
<th>Before</th>
<th>After</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Oral energy (kcal)</td>
<td>43</td>
<td>2129 ± 895</td>
<td>2341 ± 983</td>
</tr>
<tr>
<td>Oral fat (g)</td>
<td>43</td>
<td>93 ± 42</td>
<td>110 ± 52</td>
</tr>
<tr>
<td>HPN Energy (kcal)</td>
<td>33</td>
<td>1045 ± 391</td>
<td>948 ± 460</td>
</tr>
<tr>
<td>HPN Volume (ml)</td>
<td>33</td>
<td>2311 ± 880</td>
<td>2198 ± 950</td>
</tr>
<tr>
<td>HPN Frequency (days)</td>
<td>33</td>
<td>6.3 ± 1.3</td>
<td>5.9 ± 1.5</td>
</tr>
<tr>
<td>HPN Nitrogen* (g)</td>
<td>33</td>
<td>9.4 (8, 11)</td>
<td>9 (7.9, 11)</td>
</tr>
</tbody>
</table>

* Median (IQR)
Results – Intestinal Output

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Patients with intestinal continuity⁵</td>
<td>14</td>
<td>40.2 ± 31.4</td>
<td>38.6 ± 28.8</td>
</tr>
<tr>
<td>Patients with an intestinal stoma⁶</td>
<td>19</td>
<td>35.4 ± 27.4</td>
<td>27.3 ± 10.1</td>
</tr>
<tr>
<td>Actual volume (ml)</td>
<td>5</td>
<td>3503 ± 2560</td>
<td>3670 ± 2134</td>
</tr>
</tbody>
</table>
Results – Nutritional Status

<table>
<thead>
<tr>
<th>Variable</th>
<th>Before</th>
<th>After</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>48</td>
<td>62.1 ± 9.7</td>
<td>62.8 ± 9.4</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>48</td>
<td>22.3 ± 2.9</td>
<td>22.8 ± 2.6</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TST (mm)</td>
<td>31</td>
<td>17.63 ± 6.9</td>
<td>17.88 ± 7.1</td>
</tr>
<tr>
<td>MAMC (cm)</td>
<td></td>
<td>22.1 ± 2.6</td>
<td>22.3 ± 2.6</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TST (mm)</td>
<td>17</td>
<td>11.63 ± 3.9</td>
<td>11.1 ± 4.3</td>
</tr>
<tr>
<td>MAMC (cm)</td>
<td></td>
<td>24.4 ± 2.2</td>
<td>24.5 ± 2.2</td>
</tr>
</tbody>
</table>
Results – Quality of Life

- No significant improvement when all patients analysed
- In the subgroup of HPN patients improvements observed in ED-5Q index ($p=0.007$) & VAS ($p=0.001$)
- Patients who ↓ frequency of HPN infusions showed an improvement in ED-5Q index ($p=0.006$) & SF-36 physical functioning ($p=0.03$) compared to those who maintained frequency of infusions
Conclusion

- The study shows positive effect of ongoing education in stable CIF patients, which can result in clinical benefits including the reduction of HPN requirements.
Acknowledgements

- Dr Simon Gabe
- Dr Angela Madden
- Dr Kevin Whelan
- St Mark’s Foundation
- BDA General & Education Trust
- Patients
Thank you
References